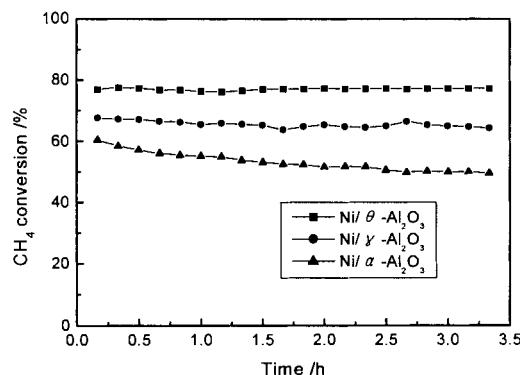


Partial Oxidation of Methane over Ni/θ-Al₂O₃ Catalysts

Hyun-Seog Roh, Ki-Won Jun, Wen-Sheng Dong, Sang-Eon Park,* and Yung-Il Joe†

Catalysis Center for Molecular Engineering, Korea Research Institute of Chemical Technology, Daejeon 305-600, Korea

†Department of Chemical Engineering, Yonsei University, Seoul 120-749, Korea


(Received March 19, 2001; CL-010241)

Ni/θ-Al₂O₃ exhibits remarkably high catalytic activity and stability in partial oxidation of methane to synthesis gas. It gives more than 98% CH₄ conversion, 98% H₂ selectivity and 100% CO selectivity at 850 °C and the activity was maintained for 100 h.

Catalytic partial oxidation of methane (POM) has received much attention as a promising alternative to steam reforming of methane (SRM) due to mild exothermicity, high conversion, high selectivity, suitable H₂/CO ratio (=2.0), and very short residence time.^{1–3}

As a catalyst for the POM reaction, Ni/γ-Al₂O₃ catalyst has been used.⁴ However, Ni/γ-Al₂O₃ is usually unstable at high temperature (> 700 °C) because of the thermal deterioration of the γ-Al₂O₃ support as well as phase transformation into α-Al₂O₃. Therefore, it is necessary to modify γ-Al₂O₃ support in order to obtain thermally stable support for the POM reaction like Xiong and co-workers,⁵ who modified Ni/γ-Al₂O₃ with alkali metal oxide and rare earth metal oxide. By the way, Liu and co-workers⁶ reported that the catalyst surface with coexistence of both Ni⁰ sites and NiO_x species was active and selective for the POM reaction. Also, we reported that Ni/Ce–ZrO₂ showed highly stable activity in POM owing to the strong interaction between Ni and Ce–ZrO₂ and mobile oxygen species.³ Therefore, we aimed to prepare stable Ni/θ-Al₂O₃ catalyst having NiO_x species and strong interaction between Ni and θ-Al₂O₃, which overcomes the demerits of Ni/γ-Al₂O₃ catalyst without further modification. Consequently, we have successfully performed the POM reaction over Ni/θ-Al₂O₃ with high activity as well as high stability.

Supports employed in this study were γ-Al₂O₃ (S_{BET} = 234 m²/g), θ-Al₂O₃ (S_{BET} = 167 m²/g), and α-Al₂O₃ (S_{BET} = 1 m²/g). θ-Al₂O₃ was prepared by calcining γ-Al₂O₃ for 6 h after the temperature reaching 900 °C by careful heating with the heating rate of 1 °C/min. Supported Ni catalysts were prepared by the impregnation of appropriate amounts of Ni(NO₃)₂·6H₂O onto supports followed by drying at 100 °C and calcining at 550 °C for 6 h in air. Activity tests were carried out using a conventional fixed-bed microreactor. The detailed procedures for the reaction and TPR were described elsewhere.^{3,7} The supported Ni catalysts (3 wt% Ni) mentioned above were tested at 750 °C and space velocity of 55200 cm³/h·g_{cat} and the change in CH₄ conversion with time on stream are presented in Figure 1. In the case of Ni/α-Al₂O₃ catalyst, the activity decreased gradually with increasing time due to the carbon which was formed during the reaction. Ni/γ-Al₂O₃ showed relatively high initial activity (68% conversion), but the activity decreased slowly but steadily with time due to the phase transformation. However, Ni/θ-Al₂O₃ exhibited the highest activity (77% CH₄ conversion) as well as high stability. The activity was maintained for 100 h during a

Figure 1. CH₄ conversion with time on stream over 3% Ni/support systems. Reaction conditions: P = 1 atm, T = 750 °C, CH₄/O₂ = 1.875, GHSV = 55200 cm³/h·g_{cat}.

prolonged test. Thus, it is confirmed that Ni/θ-Al₂O₃ showed higher activity than those of Ni/α-Al₂O₃ and Ni/γ-Al₂O₃ as well as high stability without further modification.

Table 1 summarizes the Ni content effect on CH₄ conversion, H₂ selectivity, CO selectivity, and H₂/CO ratio over Ni/θ-Al₂O₃. Both CH₄ conversion and selectivity to H₂ and CO increased with the rise of Ni loading up to 12%, and above this level decreased. All the catalysts showed stable activities without any significant decrease during the reaction process. Especially, 12% Ni/θ-Al₂O₃ exhibited the highest CH₄ conversion (90%), H₂ selectivity (93%), and CO selectivity (93%). H₂/CO ratios of the catalysts were 2.0 except 2% and 15% Ni loading. This is due to the fact that 2% Ni/θ-Al₂O₃ has less Ni⁰ sites and 15% Ni/θ-Al₂O₃ has relatively large amounts of free Ni sites resulting in Ni sintering, which will be explained later. The activities of 12% Ni/θ-Al₂O₃ with various GHSV and temperature were tested. GHSV effect was not so significant. The conversion was almost unchanged without regard to GHSV.

Table 1. CH₄ conversion, H₂ selectivity, CO selectivity, and H₂/CO ratio over Ni/θ-Al₂O₃ catalyst (Reaction conditions: P = 1 atm, T = 750 °C, CH₄/O₂ = 1.875, GHSV = 55200 cm³/h·g_{cat})

Ni content /%	X _{CH4} /%	S _{H2} /%	S _{CO} /%	H ₂ /CO ratio
2	13	40	65	1.1
3	77	87	86	2.0
6	86	90	89	2.0
9	87	90	90	2.0
12	90	93	93	2.0
15	86	85	89	1.9

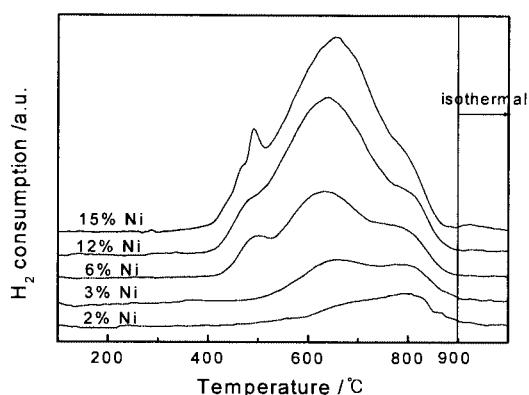
But temperature had significant effect on activities. CH_4 conversions were 93–94% at 800 °C showing a little change with GHSV, and 97–98% at 850 °C. The selectivities to H_2 and CO at 850 °C were 98% and 100%, respectively.

Table 2. Comparison of the activities depending on the catalyst

Catalyst	X_{CH_4} /%	S_{H_2} /%	S_{CO} /%	H_2/CO ratio	ref
$\text{Ni}/\theta\text{-Al}_2\text{O}_3$	90	93	93	2.0	This work
$\text{Ni}/\text{Ce-ZrO}_2$	85	98	89	2.1	3
Ni/MgO	78	97	85	2.3	3

Reaction conditions: $P = 1$ atm, $T = 750$ °C, $\text{CH}_4/\text{O}_2 = 1.875$, GHSV = 55200 $\text{cm}^3/\text{h}\cdot\text{g}_{\text{cat}}$.

Table 2 compares the results over 12% $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ with those of $\text{Ni}/\text{Ce-ZrO}_2$ ³ and Ni/MgO ,³ which have been reported as the best candidates for the POM reaction. The experimental condition for $\text{Ni}/\text{Ce-ZrO}_2$ and Ni/MgO is same as that of $\text{Ni}/\theta\text{-Al}_2\text{O}_3$. $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ shows the highest CH_4 conversion, H_2 yield, and CO yield. Also, it gives the most suitable H_2/CO ratio (= 2.0). Thus, this table clearly shows that $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ has higher activity than $\text{Ni}/\text{Ce-ZrO}_2$ and Ni/MgO , strongly indicating that $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ is the best catalytic system in the POM reaction.


This fact that Ni supported on $\theta\text{-Al}_2\text{O}_3$ showed high activity and stability can be explained as follows. Firstly, $\theta\text{-Al}_2\text{O}_3$ support is stable at high temperature because it has been treated at 900 °C. Secondly, $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ system has both Ni^0 sites and NiO_x species, which are necessary to perform the POM reaction effectively. The existence of NiO_x is confirmed by TPR results (Figure 2). Liu and co-workers⁶ explained that the POM reaction over $\text{Ni}/\gamma\text{-Al}_2\text{O}_3$ proceeds via a CH_4 pyrolysis, followed by the reduction of NiO_x by surface C atoms, which is reoxidized by adsorbing oxygen from feed gas. Thirdly, The existence of the strong interaction between Ni and $\theta\text{-Al}_2\text{O}_3$, results in preventing carbon formation and Ni sintering during the reaction. TPR patterns of $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ with various Ni loading illustrate three distinct peaks. One (peak maximum = 480 °C) is attributable to the reduction of relatively free NiO species. The second peak (peak maximum = 640 °C) can be assigned to the complex NiO_x species which have the strong interaction with $\theta\text{-Al}_2\text{O}_3$. And the third peak, appearing at 800 °C, is attributed to highly dispersed

NiAl_2O_4 species. Compared with TPR patterns of $\text{Ni}/\theta\text{-Al}_2\text{O}_3$, $\text{Ni}/\gamma\text{-Al}_2\text{O}_3$ shows only a strong high temperature peak at 800 °C with a fresh catalyst. According to Liu and co-workers' results,⁶ TPR patterns of the reduced catalysts and the fresh catalyst following the POM reaction showed peaks with maxima at 520–560 °C and no peak appeared at 800 °C, indicating that NiO_x species were formed during the reaction. However, $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ shows NiO_x species with the fresh catalyst. This means that Ni was deposited on the thermally stable $\theta\text{-Al}_2\text{O}_3$ so that NiO_x species are formed rather than NiAl_2O_4 . Thus, it can be strongly expected that NiO_x species over $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ are more stable and effective in POM than those over $\text{Ni}/\gamma\text{-Al}_2\text{O}_3$. The retardation of NiO_x reduction, compared with that over $\text{Ni}/\gamma\text{-Al}_2\text{O}_3$, can be interpreted as the strong interaction between NiO_x species and $\theta\text{-Al}_2\text{O}_3$. According to our previous results,^{3,7} the strong interaction between Ni and support results in stable activity without catalyst deactivation in POM or SRM. $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ shows different TPR patterns depending on Ni loading. 2%-Ni loading catalyst shows only reduction peak of NiAl_2O_4 , over which low CH_4 conversion (12%) and low selectivity to H_2 and CO were measured (Table 1). Therefore, it is clear that NiO_x species are necessary to perform the POM reaction with high activity and selectivity. NiO_x reduction peaks can be seen over the catalysts having more than 3%-Ni loading, which is good consistent with the high activities over these catalysts. 6%-Ni catalyst clearly shows 3 distinct peaks, which are assigned above. For 12% Ni system, 3 peaks can be seen but the first and the third peak appears as a shoulder. However, 15% $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ clearly shows the first peak, suggesting the existence of the relatively large amounts of free NiO sites. These sites may result in Ni sintering and carbon formation. Consequently, the activity of 15% $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ was lower than that of 12%-Ni loading. Based on the above results it can be suggested that $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ is partially oxidized under the POM condition and the partially oxidized sites produce active oxygen species, which may react with the deposited carbon or prevent the carbon formation, and then is reoxidized with oxygen molecules from feed gas.

In summary, $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ catalyst reveals high activity as well as high stability in the POM reaction compared with generally reported catalytic systems such as Ni/MgO and $\text{Ni}/\text{Ce-ZrO}_2$. The high catalyst activity and stability are mainly ascribed to the combination of the strong interaction between Ni and $\theta\text{-Al}_2\text{O}_3$ and the coexistence of Ni^0 and NiO_x species.

References

- 1 A. T. Ashcroft, A. K. Cheetham, J. S. Foord, M. L. H. Green, C. P. Grey, A. J. Murrell, and P. D. F. Vernon, *Nature*, **344**, 319 (1990).
- 2 V. R. Choudhary, A. S. Mamman, and D. Sansare, *Angew. Chem., Int. Ed. Engl.*, **31**, 1189 (1992).
- 3 H.-S. Roh, W.-S. Dong, K.-W. Jun, and S.-E. Park, *Chem. Lett.*, **2001**, 88.
- 4 D. Dissanayake, M. P. Rosynek, K. C. C. Kharas, and J. H. Lunsford, *J. Catal.*, **132**, 117 (1991).
- 5 Q. Miao, G. Xiong, S. Sheng, W. Cui, L. Xu, and X. Guo, *Appl. Catal., A: General*, **154**, 17 (1997).
- 6 Y. Lu, J. Xue, C. Yu, Y. Liu, and S. Shen, *Appl. Catal., A: General*, **174**, 121 (1998).
- 7 H.-S. Roh, K.-W. Jun, W.-S. Dong, S.-E. Park, and Y.-S. Baek, *Catal. Lett.*, accepted (2001).

Figure 2. TPR patterns of $\text{Ni}/\theta\text{-Al}_2\text{O}_3$ with various Ni loading.